대문
임의의 문서로
로그인
설정
Coffee Wiki 소개
면책 조항
Coffee Wiki
검색
자기자본비용 문서 원본 보기
←
자기자본비용
문서 편집 권한이 없습니다. 다음 이유를 확인해주세요:
문서를 고치려면 이메일 인증 절차가 필요합니다.
사용자 환경 설정
에서 이메일 주소를 입력하고 이메일 주소 인증을 해주시기 바랍니다.
문서의 원본을 보거나 복사할 수 있습니다.
'''자기자본비용'''(cost of equity)은 기업에 대해 주주들이 요구하는 요구수익률(required rate of return)이다. 일반적으로 자기자본비용은 명확히 드러나지 않는다. 그래서 배당할인모형과 자본자산가격결정모형과 같은 방법을 통해 자기자본비용을 추정할 수 있다. == 배당할인모형 == '''배당할인모형'''(dividend discount model)은 미래에 받게 될 배당의 현재가치로 주식의 가치를 계산하는 방법이다. 배당할인모형에서는 주식의 배당에 대해서만 가치를 인정하며 의결권 등 주식으로부터 주어지는 다른 가치를 고려하지 않는다. 또한, 미래의 배당은 확정적이지 않기 때문에 배당에 대한 추가적인 가정이 필요하다. 그 중에서 배당이 매년 일정한 비율로 영구히 성장한다고 가정하면 다음과 같은 식을 구할 수 있다. <div style="text-align: center;"> <math>P_0 = \frac{D_1}{R_E-g}</math> </div> 여기서 <math>P_0</math>는 현재 주식의 가격, <math>D_1</math>는 다음 기간의 배당, <math>R_E</math>은 자기자본비용, <math>g</math>는 배당의 성장률이다. 위 식은 영구연금 공식을 활용하여 쉽게 얻을 수 있다. 위 식을 자기자본비용에 대해 정리하면 다음과 같은 식을 구할 수 있다. <div style="text-align: center;"> <math>R_E = \frac{D_1}{P_1} + g</math> </div> ===배당할인모형의 한계=== 배당할인모형은 배당을 지급하지 않는 기업에 적용할 수 없다. 또한 배당할인모형을 통한 자기자본비용의 추정이 배당의 성장률 값에 민감하다. == 자본자산가격결정모형 == '''[[자본자산가격결정모형]]'''(Capital Asset Pricing Model; CAPM)은 주식시장에서 기업이 감수하는 시장위험의 정도에 비례하여 주주가 요구하는 수익률이 높아진다는 이론이다. 구체적으로는 다음과 같은 식이 성립한다. <div style="text-align: center;"> <math>R_E = r_f + \beta \times \left( R_M - r_f \right) </math> </div> 여기서 <math>r_f</math>는 무위험수익률, <math>\beta</math>는 기업의 시장위험(베타), <math>R_M</math>은 주식시장 전체의 평균 수익률을 의미한다. 자본자산가격결정모형을 통해 자기자본비용을 추정하는 것에는 배당이 꾸준하지 않거나 없는 기업에 대해서도 적용 가능하다는 장점이 있다. 한편, 베타를 먼저 추정해야 한다는 단점이 존재한다.
자기자본비용
문서로 돌아갑니다.